JOURNAL OF PROPULSION AND POWER
Vol. 9, No. 1, Jan.-Feb. 1993

Gas-Dynamic Flow in a Spinning, Coning Solid Rocket Motor

D. L. Misterek,* J. W. Murdock,} and S. Koshigoe#
Aerospace Corporation, El Segundo, California 90245

A numerical study was performed to calculate the moment induced by gas-dynamic flow through a spinning,
coning payload assist module (PAM). Although the flow is three-dimensional, the solution is achieved by solving
two sets of two-dimensional equations. The flowfield in a spinning, nonconing motor is first obtained. Then,
the spatially periodic perturbation about the axisymmetric flow is computed to account for the vehicle’s coning
motion. Inviscid, single-phase simulations were performed with geometries corresponding to the grain config-
urations near the beginning, middle, and end of the burn. For all cases a stabilizing moment is predicted.
However, the numerical study predicts a moment that is only 40-80% of the commonly used jet-damping value
obtained from a one-dimensional flow theory. The simulations using the two earlier grain configurations agree
with flight data; the vehicle exhibits stable motion for approximately the first three-quarters of the firing.
However, the analysis for the grain configuration near the end of burn predicts stability but an exponential
increase in the cone angle is observed in flight. The model was improved by including the aluminum oxide
particles and viscous effects separately. The two-phase flow calculation predicts a slightly larger stabilizing
moment than the inviscid solution. The predicted moment for the turbulent simulation is nearly equal to that
calculated in the inviscid analysis. These simulations indicate that gas-dynamic flow is not the cause of the

instability observed on the PAM.

I. Introduction

IRTUALLY all spin-stabilized vehicles consisting of a

satellite and a payload assist module (PAM) upper stage
have exhibited a relatively consistent precessional instability
(coning) near the end of the motor burn. Flight data displaying
this typical behavior is shown in Fig. 1 where the pitch rates
for three vehicles using PAM motors are presented. For about
the first 55 s of the firing, the amplitude of the transverse rate
is seen to remain small, indicating the vehicle coning motion
is either being damped or, at least, not growing. After about
55 s, an exponential instability sets in and lasts for the re-
mainder of the burn. Although such coning did not prevent
these missions from being successful, it has resulted in the
use of a so-called nutation control system on some flights. To
date, the actual cause of the coning or precessional growth is
unknown.

One possible cause is the gas-dynamic flow through the
motor. The jet-damping model of gas flow through a spinning,
precessing motor predicts the presence of a moment on the
vehicle which will decrease the cone angle.! This damping
moment is the reason vehicles are spin-stabilized and arises
from the interaction of an implicitly assumed one-dimen-
sional, gas-dynamic flow with the Coriolis force. The flow
through the PAM motor is far from one-dimensional, as this
class of motors (Fig. 2) has the nozzle pushed forward so that
it is embedded in a nearly spherical combustion chamber.
Hence, the gas-induced moment for the PAM motor could
be substantially different than the jet-damping moment.

We are aware of two separate groups which have investi-
gated the changes to the moment for non-one-dimensional
flows. Both groups began by studying flows in precessing
vehicles with simple analytical models and then proceeded to
numerical simulations.
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Meyer? performed the initial work for the group into which
the present work falls. He showed that with the proper choice
of coordinate systems, the flow through a spinning, coning
vehicle is steady. Meyer also formulated a model problem
consisting of the inviscid, incompressible flow through a cyl-
inder. His solution to this model problem contained some
mathematical errors which were corrected in a subsequent
work by Murdock and Meyer.® The analytical solutions pre-
sented in their report showed that although the geometry
considered is one-dimensional, the moments predicted by the
three-dimensional flow model agree with the jet-damping val-
ues only at large Rossby numbers. At small Rossby riumbers,
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although the precession angle is still damped, the damping
moment varies strongly with cylinder length. The work also
concludes that the stability of a spinning vehicle propelled by
a rocket motor can only be predicted from a numerical sim-
ulation. The present work performs this type of analysis.

As for the other group, Flandro et al.,** considered a some-
what more complicated incompressible model probiem than
the one described in the previous paragraph. Their solution
indicates that precessional instabilities are possible under cer-
tain conditions. However, Murdock and Meyer?® suggest that
Ref. 4 failed to solve a well-posed boundary value problem
and, hence, the conclusion that gas-dynamic instabilities are
possible requires independent confirmation. This group has
also proceeded from analytical to numerical approaches; work
similar to that described here has been initiated by Roach, et
al.% At this time only swirling axisymmetric flows have been
computed and so no statement about stability can be made;
however, they indicated they plan to compute the full three-
dimensional flow in a spinning, precessing motor. As dis-
cussed in the following paragraphs, their proposed approach
to the three-dimensional flow problem differs from ours.

The formulation of the numerical problem solved herein is
described in Sec. II. The approach is novel in that rather than
numerically solving the full three-dimensional flow equations,
we solve two sets of two-dimensional equations derived by
linearizing in the cone angle. The numerical techniques are
based on a two-dimensional, finite-volume, total variation
diminishing (TVD) method developed by Wang’ and are de-
scribed in Sec. II1. Numerical results of increasing complexity
are presented in Secs. IV-VI. Section IV summarizes the
solutions to the inviscid equations. In Sec. V the effect of
adding aluminum oxide particles to the inviscid flow is dis-
cussed. In Sec. VI the viscous, single-phase flow calculations
are presented.

II. Formulation

The goal of the present work is to calculate the internal
pressure field in a PAM motor which is spinning and coning.
Given this pressure field, the moments acting on the vehicle
due to the flow can be obtained by integrating over the inner
surface. Conceptually, the simplest way to obtain this pressure
field is to numerically solve for the three-dimensional flow in
the motor geometry of interest. This approach has two dis-
advantages. The first disadvantage is that the side force caus-
ing the moment is very small compared with the motor thrust,
and hence, the flow is nearly axisymmetric. This means that
any three-dimensional numerical scheme must be very ac-
curate in order to resolve the small, nonaxisymmetric part of
the flow. The second disadvantage of a three-dimensional flow
solution is its cost. The PAM motor combustion chamber near
the end of burn is very large and the flow velocities are small,
on the order of 10 ft/s. Hence, the chamber has a relatively
long characteristic time. By contrast, the nozzle throat has
flow velocities of several thousand feet per second and a length
scale (diameter) an order of magnitude smaller than that of
the combustion chamber. The disparate time scales (length/
velocity) associated with these two regions result in very long
computing times, even for a two-dimensional calculation. (The
short numerical time steps set by the flow in the throat result
in a requirement of tens of thousands of time steps to converge
the combustion chamber flow.) The long computing times are,
of course, exacerbated by the necessity to perform a three-
dimensional computation.

To obviate these problems, we have chosen to implement
the analytical technique used by Meyer* and Murdock and
Meyer’ to treat a model problem. They first solve for the
axisymmetric spinning flow (the zero-order flow), which ne-
glects the coning or precession of the vehicle. Then, the linear
perturbation to this flow (the first-order flow) is obtained for
small cone angle. Both of these flowfields may be obtained
with a two-dimensional flowfield code: the zero-order flow is
steady and axisymmetric, and the first-order flow is steady in

the precessional reference frame and periodic in the azimuthal
angle. The accuracy problem is eliminated by obtaining the
perturbation to the axisymmetric flow as a separate solution.
Thus, no matter how small it is, the perturbation will not be
lost in the noise of the basic solution. The computer run-time
problem is mitigated because it is easier to obtain two two-
dimensional solutions rather than one three-dimensional so-
lution.

To be completely accurate, the gas-dynamic coning prob-
lem is a coupled problem in which the Euler dynamical equa-
tions for the solid body should be solved simultaneously with
the fluid flow equations. As discussed in Refs. 2 and 3, we
assume that the quasisteady flow in the motor is determined
by the instantaneous spin and precession rate of the vehicle.
In turn, the gas-dynamic moment is that obtained by inte-
grating the quasisteady pressure field. Such decoupling of the
dynamics can be justified by the fact that the flow time through
the motor is small compared to the experimentally observed
time scale for cone angle change. Similarly, the burn surface
geometry changes on a long time scale compared with the
flow time scale. Hence, we solve the steady flow equations
for a given burn surface geometry, and then integrate the
pressure to find the forces and moments acting on the vehicle.

Figure 3 defines the coordinate system. The X-Y-Z space
is inertial space, whereas xyz is the noninertial frame of in-
terest. The coordinate system is oriented such that Z aligns
with the flight path and z aligns with the vehicle’s primary
axis. The x-y plane is precession-fixed, not body-fixed. The
angle 6 is the cone angle, and ¢ and ¢ are the other two Euler
angles. The angular velocity in the x-y-z frame is

= . T ar sin 6i, + ar oS i, 1)

The solid-body gyroscope equations (Euler’s equations)
governing the axisymmetric vehicle take the usual form, even
though the transverse and longitudinal moments of inertia, /
and I,, are time varying?:

2
| ¥ (dv) o
MX—I[dt2 <dt> s1n0cos(9]

+ Izccll—lfsin 6 (‘l—lﬁl cos 6 + %f) (2a)
M, = I(C:T{fsine + Zi—f%cos 9)

- IZ% (%’ﬁ_’ cos 6 + Z—‘f) (2b)
MZ=IZ<9§+%COSO—%%%?QHO> (2¢)

The moments M,, M,, and M, are the gas-dynamic mo-
ments. The only source of a z moment is the viscous shear
between the wall and the azimuthal flow. Therefore, it is zero
in inviscid flow and small for viscous flow. In any case this
moment has no effect on the coning. If the z moment is
neglected then Eq. (2c) has an exact integral

de dy
— 4+ — = 3
ar + ar cos 6 3) ,

where ( is the Z-component of angular velocity of the rigid
body relative to inertial space. Neglecting the other two mo-
ment components gives a free precession solution (valid for
constant 6)

dys -
ar cos 8 = o) 4
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where the longitudinal-to-transverse inertia ratio, o = L/,
has been introduced. We are interested in the small gas-
dynamic perturbations to this free-precession solution. Fur-
ther, we note that a nonzero value of the x moment perturbs
the precession rate dy/dt; a positive y moment is unstable and
causes the cone angle 6 to increase, whereas a negative mo-
ment is stable; the z moment changes the total vehicle angular
velocity (. Because coning is the primary concern the y mo-
ment will be of paramount interest here.

In addition to the assumption that the moments are small,
we also assume that the cone angle 6 is small. A flight vehicle
with a large cone angle is a failure; we are interested in the
small-angle behavior that may produce such an unsatisfactory
state.

With the aforementioned assumptions the expression for
the angular velocity becomes

w = ocQ0i, + oQi, %)

We solve three different sets of flow equations: 1) inviscid
single phase, 2) inviscid two phase, and 3) viscous single phase.
The equations given in this section are general, two-phase
viscous flow. The various simplified subsets of equations are
obtained by setting the appropriate terms to zero.

The full vector conservation equations for the gas phase in
a noninertial reference frame are presented below. They are
mass conservation

V-(pr) = 0 (6)
momentum conservation

pPD—: + 2p(wxv) + pwx(wxr) + Vp
~Vr 4+ Gy - v) =0 @)

and energy conservation

p DhtT + p[2(ewxv) + wx(wxr)]-v — V-(r¥)
= VA(KVT) + GH = w)-we
+GHT — T = 0 o

where for the momentum equation v is the velocity vector in
the noninertial frame, r is the position vector of xyz relative
to XYZ, p is the static pressure, p is the density, 7is the stress
tensor, and K'is the gas thermal conductivity. The quantity
G¥ is the parameter characterizing the drag between the gas
and particle phases and is given by

3up
Gt = E%f,— C%Re, Q)

where p,,, and D, are the density and diameter of individual
particles, respectively. The term p, is the mass per unit volume
of the dispersed phase (i.e., p, = number density times par-
ticle mass), and v, is the corresponding particle velocity. The
term C% is the particle drag coefficient, and Re, is the Rey-
nolds number of the particle relative to the gas flow given by

_ PDkIV - "k'
m

Re, (10)

where u is the gas dynamic viscosity.
~ Inaddition, for the energy equation /4 is the total enthalpy
in the noninertial frame (i.e., c,T + $v-v where ¢, is the gas
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specific heat), T is the temperature, and the interphase energy
exchange parameter Gf, is given by

6a,p,
Gk = —kZk 11
" kapm ( )

where «, is the heat transfer coefficient associated with the

kth particle.
For the particle phase, we have mass conservation

Ve(per) = 0 (12)

particle momentum conservation

Dy
katk + 2p(wxv,) + pewx(wxr) - GXv — v) = 0
(13)
and particle energy conservation
k
P 4 (@) + wx(@m)] v,
-Gy —v) v —GHT - T,) =0 (14)

Rather than solve the equations in the x-y-z space shown
in Fig. 3, we solve in the corresponding cylindrical polar co-
ordinates r¢pz, with velocities u, v, w. Furthermore, after
substituting the value of @ given in Eq. (5), we linearize in
the cone angle 6 by taking all dependent variables to be of
the form

u = u, + 0u, - (15)

This gives two rather lengthy sets of equations®: the equa-
tions that are zero-order in # and equations which are first-
order in 6. The zero-order equations are a set of nonlinear
equations with independent variables r and z, whereas the
first-order equations are a system of linear equations with
independent variables r, ¢, and z. For the first-order equa-
tions, the ¢ dependence is sinusoidal.® Hence, we can rep-
resent each dependent variable in the form

u(r, ¢, z) = Re[U(r, 2) €] (16)

Such a substitution for each dependent variable yields a sys-
tem of equations that is two-dimensional in which each de-
pendent variable has a complex value.

Fig. 3 Coordinate system definition.
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III. Inviseid Calculation

The complexity of the geometry and governing equations
necessitates a numerical solution. Wang’” developed a general-
purpose program to solve for the flow of single-phase gas
for axisymmetric geometries. The program employs a finite-
volume approach and the TVD method® to ensure high-
resolution solutions. The differencing scheme is second-order
accurate in space and first-order accurate in time for unsteady
problems. Wang’s program originally employed an explicit
time formulation, but was updated during the course of this
work to an implicit one. This update was particularly useful
for the steady problems treated here. Grid-generation
programs*® were also developed for mapping complex geo-
metric shapes to the unit square where efficient calculations'!
could be performed. These programs thus served as an ex-
cellent starting point for the numerical simulation.

The first task in this numerical analysis was to modify Wang’s
code to enable the solution of axisymmetric swirling flows in
inertial and noninertial reference frames. This addition al-
lowed for the solution of the zero-order equations.® The code
was next extended to solve the first-order system. Special
treatment was required to apply the basic TVD methodology
to treat the two-component, complex, dependent variables in
the first-order equations.® Test cases were performed to val-
idate both the zero- and first-order codes.?

To apply the code to the PAM motor, the grain and case
geometries are required along with the appropriate boundary
conditions. The grain burn-back pattern is presented in Fig.
4 for 1-in. web increments.'> The innermost configuration is
the initial grain shape; numerical solutions were generated at
20, 50 and 80 s into the burn and the corresponding geometries
are marked. The grid generated'? for the 80-s burn-back con-
figuration is presented in Fig. 5. This grid contains 4329 cells
and is formed by the intersection of 40 streamwise lines and
112 radial lines.

As for the boundary conditions, the burning solid propel-
lant that forms one boundary is modeled as a stationary sur-
face with mass injection. This surface is a subsonic inflow
boundary which requires the specification of four conditions:
two tangential velocity components are set to zero; the stag-
nation temperature is set to 6113°F; and a burn-rate expres-
sion relates the normal mass flux and the local static pressure

A = ppR(p/pref)n (17)

The following values are appropriate for the PAM propel-
lant™: propellant density p, = 0.0651 1b/in., reference burn
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Fig. 4 PAM grain burn-back history.
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Fig. 5 Grid for 80-s burn-back configuration—inviscid.

rate R = 0.228 in./s, reference pressure p,,; = 500 psia, and
burn rate exponent n = 0.30. With the boundary conditions
and a characteristic formulation described by Murdock,* the
pressure, density, and normal component of velocity at the
boundary, as well as the mass, momentum, and energy fluxes,
were computed.

The single inviscid boundary condition for the solid wall is
that the velocity normal to the surface is zero. This condition
was implemented by extending the technique applied by Wang's
for Cartesian coordinate systems to axisymmetric geometries.
The approach is to formulate the momentum equation normal
to the wall, require the normal velocity to be zero, and solve
the remaining expression for the normal pressure gradient.
The wall pressure can then be obtained by spatial differencing.

For axisymmetric flow, the centerline is a coordinate sin-
gularity with zero area and, therefore, no boundary condition .
is required.

For a supersonic exit, no mathematical boundary conditions
are necessary. However, to maintain the TVD methodology,
two additional columns of cells were generated outside the
nozzle’s exit plane. For these two columns, the pressure is
initially set an order of magnitude smaller than the expected
exit pressure, and the values of the other dependent variables
are obtained by extrapolating the internal solution field. When
the supersonic flow in the divergent nozzle is well-established,
the cell pressure for these two added columns is also set by
extrapolation.

A gas molecular weight of 29 1b,/Ib_-mole and a ratio of
specific heats y of 1.16 were chosen for the single-phase sim-
ulations.

To apply the first-order code to the PAM motor, the zero-
order solution obtained in body-fixed coordinates was trans-
formed to the precessional reference frame defined in Fig. 3.
The inertia ratio of the vehicle, which physically defines this
transformation, was set to 0.55. The geometry and grids for
the zero- and first-order analyses are identical.

Boundary conditions are also necessary for the first-order
solution of the PAM motor. The approach was to linearize
the boundary routines developed in the zero-order code in
the same manner as the governing flow equations. The im-
plementation of these equations followed those of the zero-
order solution.

IV. Inviscid Gas-Dynamic Results

For the initial numerical simulation, the geometry corre-
sponded to the grain configuration 80 s into the firing (a time
when the motor is unstable) and the motor spin rate was 50
rpm. The results from the zero-order spinning solution are
shown in Figs. 6 and 7. Figure 6 is a Mach number contour
plot. Chamber Mach number contours are presented from
0.002 to 0.012 at a 0.002 interval. The grain geometry affects
the shape of the contour lines with the flow accelerating slowly
in the chamber of the motor. Nozzle Mach number contour
lines from 0.2 to 4.2 at a 0.4 interval are also displayed. The
sonic line occurs near the throat, and two waves are generated
by the contoured nozzle. The azimuthal or swirl velocity rel-
ative to the motor case is displayed in Fig. 7. Contour lines
are displayed from 0 to 20 ft/s at a 5 ft/s interval and between
20-110 ft/s at a 30 ft/s spacing. The swirl velocity increases
by about an order of magnitude in the throat region due to
conservation of angular momentum.

Fi

ot

g. 6 Mach number contours—80-s inviscid case.
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Fig. 7 Azimuthal velocity contours (ft/s)—80-s inviscid case.

Fig. 8 First-order perturbation pressure contours for 80-s case (psi/
rad)—cosine term.

As a check on the accuracy of the solution and the con-
vergence to a steady solution, two quantities that are con-
served for steady flow, mass and angular momentum flux were
calculated at each cross section formed by the nominally radial
grid lines. In the numerical implementation of the steady-
state continuity equation, mass should be conserved exactly;
mass was conserved to within 0.15%. Conservation of angular
momentum flux is implied by the azimuthal momentum equa-
tion, but in this case the formulation and the numerics do not
force it to be exact; angular momentum was constant within
2.8%.

To calculate the moment determining the growth or decay
of the cone angle, the real, or cosine, component of the per-
turbation (first-order) pressure is required. The imaginary, or
sine, component affects the motor’s precession rate. A con-
tour plot of the amplitude of the cosine component of the
perturbation pressure is presented in Fig. 8. A series of con-
tour lines from —0.004 to 0.012 psi/rad at a 0.004 psi/rad
interval, along with two additional contour lines at 0.04 and
0.5 psi/rad are shown. Positive values acting on surfaces that
face downward result in stable coning moments; negative val-
ues on downward-facing surfaces give unstable moments. A
positive perturbation is observed in most regions, with the
maximum disturbance occurring near the throat. Integrating
the pressures gives a moment per unit cone angle acting about
the vehicle’s c.m. of —2800 Ibgin./rad. A negative moment
indicates that the gas flow has a stabilizing effect on the ve-
hicle. These calculations take the c.m. of the vehicle to be
108 in. forward of the nozzle exit plane. Convergence of the
solution was monitored using techniques similar to those de-
veloped for the zero-order code. Since accurate determination
of the moment acting on the vehicle is of primary interest,
this quantity was plotted against iteration number to ensure
its convergence.

The numerically computed moment can be compared with
the easily calculated jet-damping moment, in which one-
dimensional flow is assumed, i.e., only the axial component
of velocity is nonzero. The expression for the jet-damping
moment is

M, = ~wm(z3 ~ 22) (18)
where w, is the transverse, or y-component, of angular ve-
locity, and 1 is the total mass flow rate. The quantities z,
and z, are the nozzle exit and propellant locations of the motor
relative to the center of mass, respectively. As stated, z, is
108 in. Since the surface of the propellant is curved, z, should
be found by performing a mass-weighted integral. However,
for simplicity we used the smallest and largest possible values
of z; to bound the jet-damping moment. The distance from
the c.m. to the propellant surface at the centerline provides
the minimum possible value of z,. For the 80-s burn-back
configuration, z, minimum is 29 in. The distance from the

Table 1 Numeric and jet-damping coning moments

Computer Jet-damping Ratio
results, model limits computed/
Case Ibe-in./rad Ibgin./rad jet-damping
I. Inviscid, single-phase flow coning moments
20 s, 50 rpm 1400 ~1900 —3400 41-74%
50 s, 50 rpm —2100 —2900 —4100 51-712%
80 s, 50 rpm —2800 ~3650 —4500 62-77%
50s, 70 rpm —3000 —4050 —5750 52-74%

II. Inviscid, two-phase flow coning moments

80 s, 50 rpm —3500 —3650 —4500 78-96%

III. Viscous, single-phase flow coning moments
80 s, 50 rpm —2800 —3650 —4500 62-77%

center of mass to the end of the propellant where it meets
the case wall (53 in.) is z; maximum. To compare the jet-
damping value with our linearized solution we substitute the
expression for w, from Eq. (5) to get

M6 = —cQm(z3 — 23) (19)
The jet-damping moments are — 3650 and —4500 lbsin./rad
for the two bounding values of z;. Thus, the inviscid model
predicts between 62—77% of the jet-damping value.

In addition to the 80-s burn-back configuration, numerical
simulations were performed® with the 20- and 50-s motor ge-
ometry shown in Fig. 4. The motor spin rate was held at 50
rpm. The results of these simulations are given in Table 1.
The coning moments predicted for both the 20- and 50-s con-
figurations have a stabilizing effect on the vehicle. The mo-
ment predicted for the 20-s case is about half that predicted
for the 80-s configuration, while the 50-s simulation yields a
moment about three-quarters the 80-s value. The perturbation
pressure distribution in the nozzle is similar for the three
geometries considered. The increase in the stabilizing coning
moment during the burn is the result of larger positive pres-
sure disturbance in the chamber of the motor.® The predicted
jet-damping moments for the 20- and 50-s cases are also pre-
sented in Table 1. Both the 20- and 50-s simulations predict
approximately 60% of the jet-damping value. Thus, geometry
has a significant effect on the predicted moment; in contrast
to the flight data, the calculations show increasing stability
during the firing.

All the analyses up to this point were performed with a
motor spin rate of 50 rpm, corresponding to the approximate
rate at which motors in previous flights were spun. However,
for the Ulysses mission, the PAM-S was designed to operate
with a motor spin rate of 70 rpm. Therefore, the effect of
increasing the motor spin rate from 50 to 70 rpm was consid-
ered by performing a numerical simulation using the 50-s
geometry and the higher spin rate. As expected, the higher
spin rate results in larger swirl velocities than those present
for the 50-rpm spin rate.® Higher spin rates also mean larger
jet-damping moments as the two quantities are proportional.
As reported in Table 1, the first-order analysis predicts about
60% of the jet-damping value. This is approximately the same
ratio as calculated for the 50-rpm case. Thus, for the range
of spin rates considered, the simulations indicate that the
coning moment is proportional to the spin rate, as the simpler

jet-damping model also predicts.

V. Two-Phase Flow Analysis

In solid propellant, aluminum is usually added to improve
performance. At the surface of the burning propellant the
aluminum coalesces and oxidizes forming particles of alumi-
num oxide. The particles then move away from the propellant
surface with the gas flow. However, their finite mass inhibits
them from remaining in equilibrium with the local gas veloc-
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ity. Hence, the particles begin to deviate-from the gas stream-
lines, which in turn causes the gas flowfield to be altered.
Inclusion of the particles was motivated by the fact that the
gas flow solution and, hence, the induced moment, would be
modified by their presence.

There are two basic approaches for the numerical com-
putation of gas-particle, two-phase flow. In both methods,
the gas phase is taken to be a continuum as in the single-
phase case. The particle phase may be modeled as a contin-
uum or as a series of discrete particles. For this numerical
simulation, the particle phase is treated as a continuum com-
posed of small spheres occupying negligible volume. There
are no collisions among particles, and the coupling between
the gas and the particle phases is achieved through empirical
expressions for the drag and heat transfer of a single sphere
in uniform flow given in Sec. II.

In order to compute the coupling terms, expressions for the
gas viscosity and thermal conductivity, drag coefficient, and
heat transfer coefficient are required. The gas viscosity is a
function of temperature. For the two-phase calculation, it is
expressed in a power-law form

p = u(TITY" (20)

where ¢ is equal to 0.65, and the reference viscosity and
temperature, u, and 7T, are 1.874 X 10~ ¢ Ibg-s/ft?> and 6993°R.

The drag coefficient and the heat transfer coefficient are
functions of the relative Reynolds number defined in Eq. 10.
For our purposes, the relative Reynolds number is small and
simple expressions are adapted for the drag coefficient and
the Nusselt number. The drag coefficient is divided into Stokes
and nonStokes drags'®:

C, = 24/Re, for 0 < Re, <0.34

= 0.48 + 28/Re)®  for  0.34 < Re, (21)
The heat transfer coefficient, expressed in terms of a Nus-
selt number, is provided by Knudsen and Katz!”

Nu = 2 + 0.6 PrRe, (22)

where the Prandtl number Pr was taken as 0.72.

To capture the large gradients that exist in the flow,8-21
the TVD method developed by Harten® was applied to both
the gas and particle phases. For a system of equations Harten
constructs the characteristic form of the equations and then
applies his method for a single equation to each of the char-
acteristic equations. In the development of the characteristic
equations, eigenvalues and eigenvectors of the system of gov-
erning equations are required.® However, for the particle phase,
the eigenvalues are degenerate, owing to the lack of a quantity
corresponding to the pressure in the gas phase. This degen-
eracy prevents one from obtaining a complete set of inde-
pendent eigenvectors. Thus, it is not possible to apply the
TVD flux modification for the particle system in the same
manner as for the gas phase. However, with the exception of
the particle continuity equation, the equations for the particle
phase are already in characteristic form. Therefore, the TVD
flux method is applied to each individual particle equation
along the characteristic direction. As for the continuity equa-
tion, although not in characteristic form, it is solved along
the same characteristic direction as the other equations. A
similar approach was taken by Rudinger and Chang® when
they applied the method of characteristics to two-phase flow.
To validate the two-phase code, both one- and two-dimen-
sional test cases were performed.® ‘

For the PAM motor appropriate boundary conditions had
to be incorporated. The gas phase boundary conditions are
identical to those used in the inviscid single-phase simulations.
The implementation is also nearly the same. An earlier method’
was used to calculate the wall pressure in which the wall

interaction is treated in terms of one-dimensional wave re-
flections. Essentially identical results are obtained from both
solid-wall boundary condition routines. The inlet boundary
was also treated in a slightly different manner as explained
below.

For the particle phase, the centerline and downstream
boundaries require no conditions and are treated the same as
the gas phase. The solid walls are treated as absorbing; any
particles that impinge upon the walls are trapped. This con-
dition was implemented by determining (in cells adjacent to
the wall) the direction of the particle velocity. If the velocity
is toward the wall the particle mass flux at the wall is computed
and that mass exits the computational domain. Therefore, the
computation correctly models the real PAM motor which traps
a finite amount of slag during the burn. A no-flux boundary
condition is applied if the particle velocity is away from the
wall.

The particle inlet boundary condition is specified such that
the particle phase is in thermal and velocity equilibrium with
the gas phase.” The mass leaving the burn surface is com-
posed of both gas and particles for the two-phase case. In the
inlet boundary condition routine described in Sec. III, the
burn rate expression [Eq. (17)] represents the total mass flow
rate per unit area. It is valid for single- or two-phase flow.
For two-phase flow, the fraction composed of particles is de-
termined by the propellant formulation. For the PAM pro-
pellant the SPP code’? predicts that 34% of the mass leaving
the surface is in the particle phase. Thus, the mass flow rate
is calculated using Eq. (17) and then divided into a gas and
a particie portion. The gas flow rate is used to determine the
inlet gas conditions in the manner described for the single-
phase case.

The values of the gas properties for the single-phase case
were selected to simulate the effects of the gas-particle flow.
However, for the two-phase case, the gas and particle phases
are solved for separately. The gas constant and ratio of specific
heats are based on the actual gas composition. The gas com-
position changes slightly through the motor, but representa-
tive values obtained from an SPP run are a gas molecular
weight of 20.1 1b, /b -mole and a ratio of specific heats y
equal to 1.2. In addition, the stagnation temperature was
increased from that used in the single-phase cases to a value
of 6993°R. This value is higher than the actual stagnation
temperature so that our perfect gas model imparts the energy
associated with chemical reactions. Hence, the calculated thrust
more accurately matches that reported by Morton-Thiokol.
The particles were 4 u in diameter, had a density of 230 1b_/
ft>, and a specific heat ¢, of 11,292 Ibft/slug’R.

The results from the two-phase PAM simulation are pre-
sented in Figs. 9—-11. The geometry again corresponds to the
80-s configuration, and the motor spin rate is 50 rpm. In order
to gain some insight into the two-phase results, the particle
density p* is contour plotted in Fig. 9. In the chamber, only
the contour line corresponding to p* = 102 1b/ /ft is dis-
played. Other lines are not shown as the particle density in
the chamber varies by only a few percent. In the nozzle,
contour lines in the range 10-'5-10-%% 1b,/ft> are shown.
Clearly evident near the nozzle wall is the particle void region,
caused by the inability of the particles to expand with the
flow after passing through the nozzle throat. The gas Mach
number contour plot is shown in Fig. 10 and is considerably
different from the single-phase case (Fig. 6). The maximum

Fig. 9 Particle-phase density contours (Ib,/ft%).
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Fig. 10 Gas-phase Mach number contours.

Fig. 11 Gas-phase azimuthal velocity contours (ft/s).

0.5——‘,

Fig. 12 First-order perturbation pressure contours for two-phase
case (psi/rad)—cosine term,

Mach number is shifted from the centerline to near the nozzle
wall—the region virtually free of particles. The gas swirl ve-
locity is presented in Fig. 11 and should be compared against
the corresponding single-phase case in Fig. 7. Again, the pres-
ence of the particles has a significant effect on the distribution;
larger swirl velocities are observed in the two-phase case. The
particle azimuthal velocity distribution is essentially identical
to that of the gas, except in the particle-free region where the
particle velocity is undefined.

As in the single-phase case, a code to solve the first-order
system of equations was developed. The two-phase first-order
equations and the boundary conditions are implemented as
described in Sec. I1I for the single-phase, first-order case. The
key result from the simulation is presented in Fig. 12, where
the magnitude of the real, or cosine, component of the gas per-
turbation pressure is presented. For comparison, the single-
phase result is shown in Fig. 8. Larger positive perturbation
pressures are observed for the two-phase simulation. This
increase results in a two-phase moment of —3800 1bin./rad
having a more stabilizing effect on the vehicle than the single-
phase case, —2800 Ibsin./rad. The two-phase stabilizing mo-
ment represents about 87% of the jet-damping value as sum-
marized in Table 1. Thus, the particles have a stabilizing effect
on the vehicle and do not help to explain the observed insta-
bility.

VI. Viscous Calculation

If viscous effects result in a large separation region in the
imbedded motor chamber, the moment acting on the vehicle
may be significantly different than that predicted by the in-
viscid calculation. The equations governing viscous flow are
presented in Sec. II. Viscous effects were considered only for
the zero-order solution. With this approach, the separated
flow region, which is assumed to be the major effect of vis-
cosity, is still treated. This gives a more expeditious overall
treatment.

Widhopf and Wang!! developed and implemented the basic
method used to treat the viscous terms; their technique is
used here. To simulate turbulence, the molecular viscosity is
replaced by the combination of the molecular and eddy vis-
cosity uw + u,. For the viscous calculations we replaced the
power law variation for the dynamic viscosity in the two-phase

analysis with a slightly more complicated Sutherland law dis-
tribution.?

w = CTY(T + C,) (23)

where C, and C, are constants taken as 2.269 x 10-8 slug/
(ft-s-°R) and 198.72°R, respectively.

Wang and Widhopf!'* showed that the Baldwin-Lomax?
turbulence model accurately predicts the separated region for
external flows. This model was applied to the present internal
swirling flow problem. The Baldwin-Lomax algebraic model?*

" is divided into two parts: 1) a section to calculate the turbulent

viscosity in the so-called inner layer; and 2) a section to de-
termine the outer layer turbulent viscosity. The inner layer
scales with the wall shear; the vorticity level in the flow sets
the outer layer length scale.

Far from solid boundaries, the turbulent viscosity will be
small compared with the molecular viscosity. Therefore, in
the majority of the flow the eddy viscosity coefficient was set
to zero. The exception was a band along the solid walls of
the motor. A fourth-order polynomial in the distance from
the wall was used to adjust the distribution so that it smoothly
approached zero.

At the burning propellant surface and centerline, the
boundary conditions and their implementation remain un-
changed from the inviscid case. For the solid walls a no-slip
condition is imposed and the walls are assumed to be adi-
abatic; therefore, the three components of velocity were set
to zero and the temperature gradient normal to the wall is
zero. The wall temperature was obtained by finite-differenc-
ing the expression for the normal temperature gradient. Ap-
plication of the no-slip condition to the continuity equation
yields the wall density, and the wall pressure follows from the
ideal gas law. Wall fluxes are calculated from the boundary
values.

At the exit plane, the flow is supersonic except for a small
region in the boundary layer. From a mathematical stand-
point, boundary conditions at the outflow are required. How-
ever, the effect of these conditions is confined to a layer of
thickness O(Re™'). Thus, from a practical standpoint, there
is no upstream influence except in the boundary layer (where
Re — (). We impose no boundary conditions except extrap-
olation at any supersonic downstream station. For the sub-
sonic boundary-layer region experience has shown that for
high-speed flows of the type considered here, the upstream
effect is minimal. Therefore, the same extrapolation tech-
nique employed for the inviscid cases was employed in the
viscous analysis.

The grid used in the inviscid calculation was not adequate
to resolve the boundary layer or any recirculation region that
may exist. Therefore, a new grid for the 80-s burn-back ge-
ometry was generated®® with cells densely packed near the
solid walls where the turbulence level is known to be large.
In the initial viscous grid, the boundary layer at some locations
along the wall was not completely resolved. Therefore, a se-
ries of grids was generated until a grid was found in which a
minimum of five or six points were within the laminar sub-
layer. Additional grid lines were added so that the resolution
in the interior of the motor was not compromised. The final
grid consisted of 8509 cells, almost twice as many as were
used in the inviscid case. The grid contains 68 streamwise grid
lines and 128 radial lines.

The Mach number and azimuthal velocity distributions from
the turbulent simulation are nearly identical to their inviscid
counterparts (Figs. 6 and 7). An exception is the thin bound-
ary layer along the walls of the motor for the viscous case.
In addition, two recirculation regions are present in the very
corner of the chamber, but both are extremely small.®

The first-order perturbation pressure about the zero-order
turbulent flowfield is nearly identical to that obtained from
the inviscid calculation (Fig. 8). A stabilizing moment of —2800
Ibi-in./rad was obtained, which is the same value as that pre-
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dicted for the inviscid case. Therefore, the inclusion of the
turbulent, viscous terms in the zero-order solution has only
a small effect on the perturbed flowfield.

VII. Conclusion

An inviscid simulation was performed with geometry cor-
responding to the grain configuration 80 s into the burn and
a motor spin rate of 50 rpm. A stabilizing moment of — 2800
Ib-in./rad was predicted, which represents about 70% of the
jet-damping value. Thus, although the simulation results in a
moment smaller than the jet-damping value, stability is pre-
dicted.

Two additional configurations, which correspond to the burn-
back geometries 20 and 50 s into the firing, were analyzed.
Stabilizing moments of —1400 and —2100 Ib-in./rad are cal-
culated, respectively. Thus, the geometry has a significant
effect on the moment. However, in contrast to the flight data,
the simulation predicts greater stability later in the burn. These
moments are about 58 and 62% of their jet-damping values.
A second, higher motor spin rate case was also considered.
Results indicate that in the range of spin rates considered,
the moment was proportional to spin rate. The simpler jet-
damping model also predicts this behavior.

Separate inclusion of the solid particles and the fluid vis-
cosity in the model did not change the conclusions reached
in the inviscid, single-phase computations. For the 80-s burn-
back geometry, the two-phase flow calculation yields a larger
stabilizing moment than the inviscid case, —3800 lb+in./rad.
The turbulent simulation for the 80-s geometry predicts a
moment nearly equal to that of the inviscid solution. Thus,
the analysis indicates that the gas-dynamic flow is not the
cause of the observed coning instability.
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